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Abstract. Two 211 quasiperiodic tilings with generalized tenfold symmetry are derived from 
the lattice A:, the reciprocal of the root lattice A,. Both tilings are built from four tiles, 
triangles in one case, rhombi and hexagons in the other. After a brief description of the 
tilings and their s t r ~ c t ~ r e s ,  we introduce the equivalence concept of mutual local derivabil- 
ity. We present its key properties and  its application to several tenfold tilings and discuss 
some implications on a future classification of tilings in position space. 

1. Introduction 

The discovery of quasicrystals by Shechtman eta1 [ 11 and the independent examination 
of certain aperiodic tilings [2-41 has turned the regime between the crystalline and 
amorphous phases into an active field of solid state research. Certainly, the quasicrystal- 
line structures represent only one additional class of ordered structures which, however, 
come closest to the crystalline phase. In the light of the classification of the space 
groups for crystals it is not surprising that a similar classification for quasicrystals has 
been a challenge ever since their first appearance in experiment. 

However, things are more complicated with quasicrystals. Usually one attempts to 
describe their microscopic spatial arrangement by projection of higher-dimensional 
periodic structures. On the one hand, this gives rise to infinitely many possibilities of 
quasiperiodic patterns even with the same (generalized) symmetry which does not look 
like the solution of the classification problem. On the other hand, the Fourier modules- 
i.e., the sets of points in  the reciprocal space on which the Fourier transform of, e.g., 
delta scatterers on special positions of the patterns (like vertices of tilings) may have 
non-vanishing amplitudes-might be equal (up to similarity transformations) for 
different projection models. Therefore, a first classification of quasiperiodic patterns 
is achieved by the classification of the possible modules with a certain, especially 
non-crystallographic, symmetry. This has been done for the most important set of 
modules [5]. 

But, from the point of view of tilings, this classification seems too coarsely grained. 
In particular, there is no obvious transition scheme from one pattern to another i f  they 
only share the Fourier module and, perhaps, the generalized point symmetry. And 
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even if there is one in special examples, it does not follow from intrinsic properties 
of the Fourier module. Furthermore, we would like to emphasize that such a transition 
rule should be local and should make no substantial reference to an embedding in 
higher-dimensional spaces. (This does not exclude that a given embedding might 
facilitate the finding of a local transition rule.) 

Some remarks concerning the physical significance of tilings are in order. A 
characteristic feature of the tilings under consideration is a certain type of pattern 
repetition (which will be defined more precisely in section 3 yielding the term ' ( w ,  1 ) -  
repetitivity'). Not every material which exhibits sharp diffraction peaks can necessarily 
be described as a decoration of such a repetitive tiling. For an abstract example one 
may take a continuous quasiperiodic function (in the sense of Bohr [6]) which will 
never fit into the tiling scheme. Stability calculations including relaxations on perfect 
tilings [71 seem to point to this direction. On the other hand, at least in some cases, 
the experimental situation supports the tiling hypothesis: one can mention the STM 

results of Kortan et a /  [8] as well as direct structure determination for AlCuFe [9] 
where the atomic hypersurfaces derived from the Patterson analysis are amazingly flat 
in hyperspace, which means that repetitivity of the set of positions of atoms is fulfilled 
in good approximation; also the tiling overlay to decagonal AlMnPd [ IO]  looks very 
convincing. If one accepts this interpretation of the data, one should take into consider- 
ation the following fact. Given a point set, ( w ,  1)-repetitive as defined in section 3, that 
is locally finite, one can always find a ( w ,  f)-repetitive tiling with a finite set of 
fundamental tiles so that the points can he seen as a decoration of the tiles. (To prove 
this statement, one would just take the Delaunay complex [ I l l  of the point set. The 
finiteness of the set of prototiles then follows from the ( w ,  1)-repetitivity and local 
finiteness of the resulting tiling.) Transcribed into the physical context, this means that 
a ( w ,  1)-repetitive arrangement of atomic positions that stems from flat hypersurfaces 
can always be seen as a decoration of a suitable ( iv ,  I)-repetitive tiling. 

Nevertheless, we tend to the opinion that the relevance of tilings is by no means 
completely settled. To attack this problem one certainly needs additional concepts in 
position space because many aspects of tilings are defined there and possess only an 
extremely complicated counterpart in Fourier space. In the present paper, we will 
investigate when two different tilings represent the same long range translational order 
and can therefore be regarded equivalent in this respect. This does not solve the 
classification problem, because we disregard orientational symmetry, but may be a first 
step towards a solution. We start in an illustrative fashion with some tenfold tilings 
(however, not from the generalized Penrose tilings [12,13]) and apply the concepts 
there. Our examples will lead us to the conclusion that an effective classification of 
tilings should be less crude than that of the Fourier modules [SI. 

The paper is organized as follows. In  section 2, we present two quasiperiodic tilings 
with generalized tenfold symmetry as derived from the 4~ lattice A," which is the 
reciprocal of the so-called root lattice Ad [14, IS]. Here, we can be brief because the 
situation closely resembles that of A, where the Penrose tiling [2] and the so-called 
triangle pattern (YZJ [15, 161 have been derived. We thus explicitly have four different 
patterns at our disposal which do  in fact share the same Fourier module (after an 
appropriate similarity transformation). 

We take this situation as the starting point for more general considerations in 
section 3, where we propose 'mutual local derivability' as a reasonable equivalence 
concept with respect to the description of quasicrystals. We give the key properties of 
this concept and illustrate it by application to the tenfold patterns mentioned above. 
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Furthermore, a necessary and  sufficient condition for mutual local derivability of 
patterns which are generated by a projection method is derived (leaving some details 
to the appendix). This is followed by some concluding remarks on a possible meaning 
of the resulting equivalence classes for a future classification of quasiperiodic patterns. 

2. Derivation of tenfold symmetric tilings with four different tiles from the lattice A," 

The geometric frame and  the notation in the case of A," is (almost) identical to the 
treatment of the so-called root lattice A, [15], wherefore we can be brief. I f  e, ,  . . . , e, 
denote the standard basis vectors of SD Euclidean space R', we can write the 4~ lattice 
A," as the integer linear combinations of the vectors 

a, = e, ~ 4s i =  I , .  . . , 4  s = e ,  +. . . + e , .  

For convenience, we define a, as well, but one finds a ,  +. , , + ai = 0. The lattice A," is 
confined to the 4 0  subspace 

s = {X E R~ I x . s = 0)  

and possesses the point group H = S s x Z 2 ,  which is naturally the same as that of the 
root lattice A.,. the latter consisting of all integer linear combinations of the four vectors 
e ,  - e z , .  . . , e , - e , .  (The lattices A, and A," are reciprocal to each other, for a more 
detailed description of their geometry we refer to [14].) 

The selection of the 'physical' space is done precisely the same way as i n  the 
treatment of A4 [15]. In fact, one  finds 

S = E,I@E, 

where E,, and E, are the invariant subspaces of a subgroup of the point group of A," 
isomorphic to the dihedral group D,,,. We shall denote the orthogonal projections 
onto the spaces Ell and El by the symbols rIl and rL.  respectively. 

The lattice A," is invariant under the linear transformation defined by 

a ,  % + a s  (+cyclic permutation of indices) (1) 
which is an element of the unimodular group attached to A,". It turns out that this 
transformation acts as a contraction in Ell (by a factor 1 / ~ )  and a dilation in E, (by 
- T ) .  Therefore, as is well known from other examples, this contraction (leaving the 
Fourier module invariant) forms a candidate for a deflation transformation of 
the quasiperiodic tilings to be derived. However, as will turn out in a short. 
while, the existence of a deflation transformation does not automatically result from 
the existence of a higher-dimensional lattice transformation compatible with Ell and 
E,, hut additionally depends on the specific details of the construction of the tiling. 

For the very construction we now need the Voronoi domain V(0) around the origin, 
its ZD boundaries (or 2-boundaries for short), and the corresponding dual 2-boundaries 
of the Delaunay cells of A," [17]. The Voronoi domain V(0) is the so-called permutohe- 
dron [14], 

v(o) =conv{u( P)/ u~ sS, P =&2, - I , %  I ,  2 ) )  (2) 
a 4~ polytope the vertices of which are deep holes (or interstitials) of the lattice A," 
with distance to the nearest lattice points. The 3-boundaries are 10 truncated 
octahedra (of the form of bcc Wigner-Seitz cells) and  20 hexagonal prisms, the dual 
objects being the line segments generated by the Voronoi vectors *a,  ( l G i s 5 ) ,  
* ( a ,  + a,) (1 s i < j G 5),  respectively. The 2-boundaries are regular squares and 
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hexagons while the dual 2-boundaries are regular triangles. The two kinds of 2- 
boundaries split into four classes each that will correspond to the four different tiles 
of the tilings later on. The 1-boundaries are 240 edges of equal length 3 / 5 ,  the dual 
3-boundaries of which are two types of non-regular simplices. Finally, the 0-boundaries 
are just the 120 vertices displayed in equation (2). Their dual 4-boundaries (the 
Delaunay cells of AT) are non-regular 4-simplices on a single point group orbit of AT. 

The construction of the tilings takes advantage of the one-to-one correspondence 
between 2-boundaries P of Voronoi cells and 2-boundaries P* of Delaunay cells. Two 
different ones are possible, the tiles of which are either projection images of 2- 
boundaries of the Delaunay complex-yielding a tiling built up from triangles, or the 
projection images of 2-boundaries of the Voronoi complex-yielding a tiling with 
rhombi and hexagons. In the first case, taking some point c E E,, the corresponding 
tiling consists of all T ~ I ( P * )  such that c falls in a l ( P ) ,  in the second case the role of 
P and P* is interchanged. (One has to take care that c does not lie on the boundaries 
of these ‘windows’ T ~ (  P ) ,  ?iL(P*),  respectively.) For the general construction method 
which is used for the definition of the tilings here, we refer to [ 171, the explicit projection 
algorithm is described in [IS]. Let us anticipate that here we deal with special cases 
of window mappings as defined in the next section. 

We start with the triangular tiling, symbolized by Fz:, obtained from the Delaunay 
complex. Here, we find four different tiles, two acute and two obtuse triangles. They 
combine to 20 possible vertex configurations within the tiling which are given in figure 
1 together with their relative frequencies. Each vertex configuration corresponds to an 
elementary polygon in the projection rrl( V(0)), see figure 2, the area of which provides 
the value of the relative frequency (for details, see [IS]). Figure 3 shows a generic 
tiling, obtained via the projection algorithm mentioned. (This tiling has been discovered 
earlier by McMullan [18].) 

The other natural possibility to obtain a tiling of Ell is the projection of certain 
2-boundaries of the Voronoi complex. In the resulting tiling, symbolized by TA;, one 
obtains two different hexagons, a thin and a thick one, and two rhombi, again thin 
and thick. The latter are similar to the well known Penrose rhombi, hut their edge 
lengths have ratio T (:= (1 + 6 ) / 2 ,  the golden mean). From the analysis of the Delaunay 
cells, we have to distinguish four classes of vertex configurations-hence, in a primitive 
vertex decoration, four different atoms would be possible. All in all, we obtain 13 
vertex configurations which are shown in figure 4 together with their relative frequencies. 
This local analysis stems from the projection images of the Delaunay cells into El 
which are also shown in figure 4. We will refer to the four classes of vertex configurations 
simply by a, p ,  y, and 8, according to figure 4. A part of a TA;-tiling with global 
fivefold symmetry is displayed in figure 5 (the generalized point symmetry, however, 
is D , ,  because D,,-images are locally isomorphic). 

In order to obtain a local description of the TA: and their deflation/inflation 
symmetry, it is convenient to pass from the simple tilings to (mathematically) decorated 
tilings assigning to each vertex its class (a, p ,  y, or  8). It is obvious from figure 4 that 
the decoration of a vertex is completely determined by the set of surrounding tiles, 
i.e., locally. 

A local rule for the deflation of a decorated TA? can be worked out by an inspection 
of the ‘windows’ of the tiles in  perpendicular space and their images under the 
transformation (1). This local rules results in the prescription illustrated in figure 6. It 
is also possible to perform the reverse inflation of an arbitrary (decorated) TAytil ing 
in a completely local way: the hexagons and large rhombi have to replace the configur- 
ations shown in  figure 6 in the way indicated there; the small rhombi then have to fill 
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” = 27-6 U = 21-6  v = 6 ~ - ’  ” = 21-8  

” = ZT- ’ I  = zr-14 ” = 7-15 ” = 4 2  

Figure 1. The 20 Vertex configurations of T:; with relative frequencies. The numbering 
refers to figure 2, the contributions of different orientations within the pattern have been 
summed up for the frequencies. 

the remaining gaps. Some tedious, but elementary combinatorics then lead to the 
following statement: given a tiling of the plane built from the rhombi and hexagons 
which constitute the TA:, so that only the thirteen vertex configurations a, - a 4  occur 
in this tiling, then it is always possible to apply the above local rules for inflation as 
well as for deflation, and, furthermore, the result will be a tiling which also contains 
only the vertex configurations a, - Sq. By standard arguments one can now conclude 
that every two tilings which contain only the vertex configurations mentioned, scaled 
and oriented in the right way, must be locally isomorphic (in the sense defined below). 
If we now decorate the tiles according to figure 6 and demand that they are glued 
together face-to-face without mismatch of vertex decorations we find that the vertex 
configurations a t  - & are the only possible ones in an infinite tiling. Consequently, 
they completely determine the local isomorphism class of the TA: tiling and may be 
considered as appropriate ‘matching rules’. 
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Figure 2. Pro,iectian of the Voranai cell V ( 0 )  af the lattice AT into L,. Vertices of V(0) 
are indicated by smail circles. The numbering (1-20) of the elementary polygons refer to 
the 20 possible vertex configurations in figure 1. 

Figure 3. A generic version ofthe pattern Fz;. The corresponding local isomorphism (LI-1 
class does not contain any pattern with exact global five- or tenfold symmetry. 
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Figure 5. The pattern FA;. We have chosen an exact global fivefold symmetric representa- 
tive of  the LI-class. 

Figure 6. Local deflation or the tiles a l  Y,,;. The vertex types are indicated by ( 0 - 8 ) .  
the labelling ofthe deflated tiles can be reconstructed by meane or the vertex configurations 
in figure 4. 
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I n  an earlier publication [ I S ]  we analysed the root lattice A, in detail and identified 
the two canonical tilings as the Penrose tiling [2] and the ‘triangle pattern’ Ti4 [161, 
respectively. Now, since the modules T~, (A , )  and T ~ ( A ? )  are identical up to a similarity 

.transformation, we have four different patterns (at first sight), but with the same Fourier 
module. This situation at least suggests a local analysis [12] of possible relationships 
between the patterns to which we will turn in the following section. 

3. The equivalence concept of mutual local derivability 

Now we come to the comparison between different tilings with the same generalized 
tenfold symmetry. We take four different local isomorphism (LI-) classes of tilings 
into consideration: the two described in section 2 (TA;, T:;), the classical Penrose 
tiling (see figure 7 ( a ) )  (in the version with two rhombi), symbolized TA4, and a fourth 
tiling with tenfoid symmetry, S?, (tigure f b ) ,  which has been investigated in detail in 
[15] (‘triangle pattern’). 

Let us first focus our attention on the Penrose tiling on the one hand, and on TA: 
on the other. By means of the well known matching rules which determine the Penrose 
LI-class it is seen that it is always possible consistently to replace the rhombi in a 
given Penrose tiling according to figure 8. One can see by means of the matching rules 
given above ihai ihe resuii will be a iiling of ihe  FA; ii-ciass. iviore invoived bui also 
elementary is the demonstration of the fact that one will end up with a Penrose tiling, 
if one performs the inverse replacement in an arbitrary TA:. In comparison with the 
recipe how to pass, e.g., from the Penrose tiling in the version with rhombi to that 

Figure 7. The Penrose pattern YAd ((I) with two types of vertices and the (‘triangle’) pattern 
Yz4 ( b )  as derived from the root lattice A,. 
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P 

Figure 8. Local transition between the Penrose pattern (S,J and the rhomb-hexagon 
pattern .TA;. The vertices of the Penrase pattern are just the vertices of  types a and p in 
TA; .  

built up by the so-called kites and darts [2], the procedure is only a little more 
compiicated, and one wouid tend to the opinion that the Penrose tiiing and the tiiing 
TA: should be considered equivalent with the same right as the two versions of the 
Penrose tiling itself. Indeed, as a consequence of the above result, both tilings, in  a 
certain sense, contain the same information locally, each is 'locally derivable' from 
the other. 

Because of this possibility of a local transformation of a Penrose tiling into 
Kite-and-dart or  rhomb-hexagon (TA:) iiiings and vice versa, we conclude: if there is 
some quasicrystalline material whose microscopic structure could be considered as 
sort of a decoration of the Penrose tiling, then the kite-and-dart or the rhomb-hexagon 
tiling would serve as well for this purpose, and vice versa. This resembles the situation 
in periodic structures, where one also has a lot of possible cell decompositions which 
can carry the given structure as a decoration. Of course, in the concrete case, there 

e.g., because it features the orientational symmetry better or because the decoration 
rule is simpler or whatever criterion of 'convenience' one is in favour of. Here, we are 
concerned with the question which patterns are in principle equivalent with respect to 
their ability of describing a certain long range translational order. Recognizing a spatial 
structure to be a decoration of another one simply is giving a rule how one can 

like in  the surrounding. Hence, one is led to the conclusion that patterns are equivalent 
in this regard if and only if there is the possibility of a local transformation in both 
directions as in the examples above. This way the concept of local derivability arises 
which will now be described. 

. .. 
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Let us now formulate our terms more precisely. We first introduce some basic 
notation. I n  the context here, by apatrern in a Euclidean vector space V we understand 
most generally a non-empty set of non-empty subsets of V. This definition includes 
tilings as well as sets of one-point sets, i.e., patterns of atomic positions. It would be 
possible to generalize the term ‘pattern’ even more allowing decorations with colours 
(or different types of atoms) etc, but this would only introduce some additional 
complications in notation and there is no difficulty at all to translate all the results 
~. oiven hplnw -_.” .. to the ...- mnre ..._._ genera! czsp, 

If 9 is a pattern in V and M a subset of V, we define Tn M to be the subset of 
T that consists of all elements of F which intersect M. Furthermore, let E, denote 
the closed ball around 0 in V with radius r. 

Taking over a similar concept of Danzer [ 191 we call a pattern weakly translarionally 
repetitiue or (w, /)-repetitive for short, if for every radius r >  0 there is a radius R > 0 
with the property that, for arbitrary points x: X ’ E  V; one can find a vector / E  V such 
that I + x t x ’ + B ,  and T f l ( x + B , ) = ( - / + T ) n ( x + B , ) .  These t’s which are able to 
translate patches of the form T n ( x + B , ) ,  i.e., for which some X E  V can be found 
such that s n ( x + E , ) = ( - r + T ) n ( x + B , ) ,  will be called localdisplacemenruectors of 
T with respect to the radius r. Surely, repetitivity as defined above is not a sufficient 
condition for a structure to be ‘diffractive’, e.g., a point-like mass distribution on a 
(w, t)-repetitive set does not guarantee the Fourier transform to consist of sharp Bragg 
peaks-both the additional existence of other contributions like diffuse background 
or the total absence of Bragg peaks is possible. Generally, the problem of a character- 
ization of the diffractive structures based on discrete tiling models ‘in terms of x-space’ 
is not solved at all. The term above is designed to fit the minimal conditions necessary 
for the development of our concept and it is not unlikely that quasiperiodic (discrete) 
tilings, that is to say tilings which have the property that Fourier transforms of 
distributions which respect these tilings consist of sharp Bragg peaks, are always 
(w, t)-repetitive. 

Two patterns T and T are locally isomorphic (or, synonymously, belong to the 
same LI-class) if for every r > 0 and every x E V there is some vector I, E V such that 
( t ,  + T ) n ( x  + E,) = T n  ( x +  E,) and some vector t2 E V such that ( f ,+  T ) n ( x +  E,) = 
9 n ( x +  E,). (As in the definition of (w,  /I-repetitivity here, for technical reasons, we 
operate with Tn(x+ E,) rather than with the set ofelements of T which are contained 
in x +  B,. If the elements of the patterns under consideration are bounded, as is the 
case for the usual tilings, this detail makes no difference at all.) 

Periodic patterns form a special case of (w, t)-repetitive ones. If A is a lattice in 
V (discrete additive subgroup of V with span,(A) = V), then a pattern 9’is A-periodic, 
if I+ 9= F for every translation t~ A and if A is the maximal lattice with this property. 
In the case of general (w, [)-repetitive patterns F, one can define a Z-module associated 
to 9’ which reduces to the lattice in the periodic case. To do so, take the E-module 
A , ( Y )  generated by the possible local displacement vectors of the pattern T with 
respect to the radius r ( r  > 0) as defined above. Obviously, r > r’implies A,( F) E A,,( T). 
Therefore, it makes sense to define the limit module A(?) by A ( T ) : = n , > , A , ( F ) .  
The following statements can easily be demonstrated. 

some S E  V. 
i i )  if 9 is A-perio& and y is ioca;;y is omoip:‘ii .w,ih y, then 5=s+J”’ for 

(2) If F is (w, /)-repetitive and F’ locally isomorphic with T, then F’ is (w, 1)- 
repetitive, and A(?) = A ( T ) .  
Therefore, the module A( T) is an invariant of the LI class of 9. The meaning of this 
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module in the case of patterns which are derived by a projection method will be 
described below. 

Let us now come to the definition of the central concept of this section, namely 
that of ‘local derivability’. The pattern F is said to be locally derivable from the pattern 
T if there exists a radius r>O such that Tn{x}=(r+T)n{x} holds whenever 
T n ( x + B , ) = ( f + T ) n ( x + B , ) .  Clearly, this is a necessary and sufficient condition 
for the possibility to give a (formal) rule of how one has to construct the part of Y 
surrounding a given point if one knows only the neighbourhood of that point in T 
up to the radius r. Some properties of this relation are immediate. 

(3) It is reflexive and transitive. 
(4) If 9, is locally derivable from T2 and Tk lies in the same LI-class as T2, then 

one can find Ti in the LI-class of T, which is locally derivable from Ti. 
( 5 )  If T is locally derivable from T’ and 7 is A’-periodic, then T is A-periodic 

with A’EA.  On the other hand, if A’G A and T is A-periodic, Y’ A’-periodic, then 
T is locally derivable from T, 

(6) If T is locally derivable from T and T is (w, f)-repetitive, then T is (w,  1 ) -  
repetitive and A( T‘) E A( T). 

Statement (4) can be strengthened to ‘simultaneous local derivability’ of one LI 
class from another, provided that one element of the first LI class is locally derivable 
from one of the second. More precisely, if T, is locally derivable from Ti, then one 
can find a radius r and an injective mapping T H F of the LI class of Ti into the 
LI class of TI, such that for every x, f E V and T;, Ti locally isomorphic to T; the 
equation T:n(x+b, )=( f+T;)n(x+B,) impl ies  T 2 ~ { x } = ( f + T 3 ) n { x } . I n t h e c a s e  
that T, and T; are mutually locally derivable (m.1.d.) from each other this mapping 
turns out to be onto, and, furthermore, one can find a radius r’ such that T2n (x + B,.) = 
( 1  + T3)n (x+  B,.) always implies T;n{x} = ( t  + Y;)n{x}. 

This way, we have established an equivalence relation between LI classes of patterns. 
We may collect all elements of the LI classes of an equivalence class with respect to 
this relation into new classes called MLD classes. That is to say, the patterns T, and 
T2 belong to the same MLD-class, if there is some Ti locally isomorphic with T2 such 
that T, and T; are mutually locally derivable ( M L D )  from each other. It is important 
to keep in mind that, by this definition, two patterns may belong to the same MLD 
class without being MLD; MLD classes are always unions of whole LI classes. As a 
consequence of 6 ) ,  A(T) is an invariant even of the MLD class of T. This gives the 
possibility for a first check whether at all two different patterns can belong to the same 
MLD class. 

We have explained how the elements of two LI classes which are subsets of the 
same MLD class can be set into one-to-one correspondence. However, this one-to-one 
correspondence is not uniquely (or naturally) determined. For example, it is possible 
that two patterns r a n d  T a r e  MLD whereas T has some global orientational symmetry 
and T has not. Clearly, in such a case, there are several nontrivially different possibilities 
to provide such a one-to-one correspondence between the corresponding LI classes. 
In order to get rid of this sort of ambiguity, one has to consider a refined equivalence 
concept taking into account orientational symmetry. Namely, one defines the local 
derivability of a pattern T from T to be symmetry preserving, if there is a radius 
I such that for every X E  V and every Euclidean motion S of V the equation 
T n ( x + B , ) = ( S T ) n ( x + B , )  implies T n { x } = ( S T ) n { x } .  The corresponding 
equivalence relation between LI classes is then defined in an analogous way yielding 
S-MLD classes. Obviously, this relation respects generalized point symmetry. Further- 
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more, the occurrence of arbitrarily large patches with a certain symmetry in one pattern 
of an S-MLD class forces the occurrence of arbitrarily large patches with that symmetry 
in every element of this class. 

It is now clear from the above considerations that YA; and Penrose tilings (scaled 
and oriented in the right way) belong to the same MLD-class (and even the same 
S-MLD class). Generally, in order to prove that two given patterns are MLD, it suffices 
to write down a local prescription how to pass from one pattern to the other and vice 
versa, as has been done in the example above. The task to show that given patterns 
do not belong to the same MLD-class (in no relative orientation and scaling) is 
somewhat more difficult. Let us describe in more detail which criteria for local 
derivability can be found in the case of patterns which are generated by a projection 
method, i.e., where one knows some embedding into a higher dimensional periodic 
structure. 

In order to be able to formulate rigorous results we have to set up the framework 
precisely. Firstly, we will define a formalism which generates patterns from higher 
dimensional periodic structures in a way which, to our opinion, applies to most (if 
not all) projection methods that have been proposed in the literature for the derivation 
of quasiperiodic patterns. We will investigate to what extent this formalism is deter- 
mined by the LI class of the generated patternst. Secondly, we will tackle the question 
how the relation of local derivability can be formulated in terms of the projection 
method. 

To start with the first point, let the 'physical' space V be embedded in a higher 
dimensional space Vh,,= VOV,,,, where V,,, is referred to as 'internal' space (here 
we avoid the term 'perpendicular space', because there is no naturally given metric in 
hyperspace and we do not need one); let r, rin, denote the projections of V,,, onto 
V, V,.,, respectively. One has a mapping w which assigns to each subset P of V a 
subset w ( P )  of vnt, the 'window' or 'existence domain' of P. We call w a window 
mapping, if the following conditions are fulfilled. 

W1 w(@)=@; at least one w ( P b o n - e m p t y ;  if w ( P )  # @  then P is bounded. 
W2 For every P G  V we have w ( P ) " =  w ( P )  (the windows are the closures of their 

W3 X w : = ( P + w ( P ) l P ~  V, w(P)#@) is locally finite. 
W4 A,. := ( f  E Vhyplf +3%, = Xw.)  is a lattice in Vhyp, and its projection 7r;,JAW) is 

dense in V;", . 
As a consequence of W2 and W3 the set C".:= V;,,,\U(Jw(P)I P c  V )  of regular 

points of V,,, with respect to w is dense in ynt. If r i O , ( A w )  fails to be dense in Vi,,, 
then it is always possible to lower the dimension of Vi", in order to embed the L1 class 
of patterns which we are going to construct from w. An example for such a window 
mapping is the well known method of describing positions of atoms in a quasicrystal 
by so-called atomic hypersurfaces distributed periodically in a higher-dimensional 
space, provided these hypersurfaces are flat and parallel. 

interiors (relative Vim,)). 

Now, for each regular point C E  e"., a locally finite pattern i n  V is given by 
s : : = ( P G  v l c € w ( P ) ) .  

One can show that, given r > 0, it  is possible to find R > 0 such that for each C, ,  c2 E C"., 
X, ,X>E Vthereexistssome f E r ( A - , )  which fulfils f + x , E x 2 + B R a n d ~ - : ; n ( x , + B , ) =  
( - f + T : ; ) f l ( x , + B , ) .  Aforfiori, the collection { S : ' l c ~  C".] is contained in one LI class 
of (w ,  1)-repetitive patterns. Furthermore, it is almost immediate that for every r>O, 

?The authors are indebted IO one ofthe referees far insisting on a more precise developmen1 of this point. 
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the projection n ( A w )  is contained in the module A,(F;) ( C E  Cw), Even more, one can 
find an R > 0 such that AR(T:) c a ( A w ) ;  let R, be the minimal R 2 0 for which this 
is true. (This is not that obvious in the general case but can be seen to be true by a 
more detailed inspection.) This means that from a certain size on patches can be 
displaced in  a pattern T: at most by elements of a (Awj ;  for this reason it is always 
possible to distinguish firmly between 'tiles' from different orbits with respect to 
translations by elements of n ( A W )  in a completely local fashion. As a consequence, 
A i ~ T ' " )  = A - i T"') = T().,), The IC!???! v.!.~ of Ra, &ppnds sensitiye!y nn :he -,- c ,  - n * \ -  c ,  

details of the window mapping w. The fact that for patterns obtained by a projection 
method as described above A ( S T )  can be determined without carrying out the limit 
procedure used in its definition may serve as a necessary criterion for the possibility 
that a given pattern can be generated by projection. 

Let us consider the question to what extent the LI class of patterns ST determines 
the window mapping w. Assume that we have two windnw mappings w :  and w2 which 
give rise to the same LJ class; we assume further that both internal spaces have the 
same dimension (and can be identified therefore) and contain no nontrivial element 
of the lattices A%,, ,  (We strongly suggest that the last two assumptions are 
superfluous, the first rather being a consequence of the very identity of the two LI 
classes; unfortunately, we have found no rigorous proof of this so far.) After some 
I elobalshiftin Vone h a s U ! S ~ ! c E C , , ? = U ! ~ I c E  C%J. B e c a u s e A ( S ~ j = A ( S , ~ ~ ~ )  
for some ci E C , ,  the projections of A,,, into Vint have to coincide ( i  = 1,2j. Therefore, 
it is possible to find a linear isomorphism L of V,,, mapping Am,, onto A,, and V;,,, 
onto Vjn,. L can be decomposed into two parts, L =  L'nL;,,, where L:,, leaves V,,, 
invariant and reduces to the identity on V, whereas L' is the identity on Knc but may 
shear the lattice A w ,  relatively to V. There is an obvious technique to reconstruct the 
windows w;(P) u p  to translations from the patterns FT by lifting the elements 
T( 1 )  E a ( A W , )  which fulfil T( t )  + P E TT up to their preimages f E Aw, and projecting 
them down to vn,. One sees at once that, if the decomposition L = L'a L;., cannot be 
arranged such that L'=U, not both, w l ( P )  and w2(P), can be bounded and nonempty. 
But, as a consequence of W3, windows have to be bounded (except for the case that 
A , , n  vn,#{O)). So we may assume that L'= U. If one passes from w, to w :  defined 
by setting w:(P):= Lin,(w,(P)), it is clear that w:  produces the same set of patterns as 
w l r  and now one has A w i  = A w * .  Next, one shows that for each P c  V there must be 
some translation S E  Vi,, such that w2(P) = w : ( s +  P) (otherwise one can construct a 
patch in T? no translate of which can occur in some S:., or vice versa), and with 
the same technique, one obtains that s has to be the same for all P c V. One is led to 
the conclusion that F:) is locally isomorphic to Sy: for some c, E C , ,  ( i  = 1,2)  if and 
only if there is a bijective affine transformation A of Vi,, and a translation vector f E V 
such that w 2 ( P ) = A ( w , ( f + P ) )  for all P c  V. 

So far we have dealt exclusively with the generation of one LI class of patterns. 
Our aim now is a characterization of local derivability in terms of properties of the 
window mappings themselves. We fix some window mapping w. To give the result in 
a comprehensive form, we introduce some convenient notation. If M, M , ,  M ? E  V;:,,, 
let M , h M 2 : = ( M , n M 2 ) ' ,  M , v M ~ = M , u M , , a n d i M : = ~ .  L e t d b e t h e s e t  
of all subsets M of Vim, fulfilling M " =  M. One verifies at once that (d, A ,  v, 1) is a 
Boolean algebra. Let .rQ( w )  denote the subalgebra of d generated by the set {w(P) I P C 
V). The notation using logical symbols is chosen in view of the fact that, if P, P, ,  
P 2 ~ V ,  CEC,., then c ~ w ( P , ) / i w ( P ~ ) ,  c ~ w ( P , ) v w ( P ~ ) ,  c ~ i w ( P ) ,  respectively, if 
and only if P ,E  S: and P Z ~ S ; ,  P,ES: or P>ES:, not P E  S:, respectively. 
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As outlined in the appendix, one arrives at the following result. Let w, ,  w2 be two 
window mappings with the same internal space V,,,; let A,,,n V,,,={O}. Then the 
following two statements are equivalent. 

( E l )  There are c I t  C , , ,  c 2 t  C,,  such that T:> is locally derivable from T::'. 
(E2) There is a bijective affine transformationAA of V,,, such that for w;, defined 

The characterization of MLD classes now reads 
by w;(P):=A(w,(P)), A w i ? A w ,  and d ( w ; ) ~ d ( w , )  hold. 

The window mappings wI, w2 with the same internal space V,,, and A "., n Kn, = 
{0} define the same MLD class of patterns if and only if there is an bijective 
affine transformation A of V,,, such that for w ; ,  defined by w;(P):= A(w,(P)), 
A,,=A2, ,  and d ( w ; ) = d ( w , )  holdt. 

Note that in (2) the linear part of A is completely fixed by the condition A%.5 2 A w , ,  
a consequence of the projections of the lattices to be dense in  the internal spaces. 

An inspection of the definitions of the four LI-classes of patterns under consider- 
ation now leads to the following findings. Penrose and FA: tilings fall into the same 
MLD-class as has been obtained at an earlier stage in a combinatorial fashion, YZd 
and YZ: define new MLD-classes each. (It is easy to see that, e.g., Penrose tilings and 

tilings cannot fall into the same S-MLD class because there are arbitrarily large 
patches with fivefold symmetry in every Penrose tiling which is not true for Y?+ 
tilingsi.) It should be mentioned that it is possible to derive the Penrose tiling locally 
from the Yz4 tiling (in some convenient orientation and scaling), but not vice versa. 
We have strong evidence, furthermore, that the Tz4 tiling cannot be derived locally 
from any generalized Penrose tiling [13] at all. (The latter can be described in a 4~ 

frame as well, wherefore an application of the technique mentioned above is possible.) 
Another aspect of the concept introduced above is its application to deflationlinfla- 

tion symmetries. A remarkable feature of various tilings found so far is that they may 
be rescaled by suitable factors without leaving the MLD-class, namely by the so-called 
deflation/inflation transformations. In this context one is guided to the following 
definition. Let A >  1 ( O < A <  l ) ,  R be an orthogonal transformation in V. Then, AR is 
an inflation (deflation) transformation of the pattern 9, if there is a pattern Y' such 
that AR(Y) is locally isomorphic with Y' and 3, T are MLD. One observes at once 
that the usual inflation transformation by dilation by T is an  inflation transformation 
of the Penrose tiling and the tiling Tz4 in precisely that sense. On the other hand, it  
turns out that the tiling YZ; possesses no inflation transformation with A = T, although 
it stems from the same 4~ lattice as TA: (the latter, belonging the same MLD-class as 
the Penrose tiling, is, of course, inflationable by 7). One can show that T~ is the smallest 
A > 1 providing an inflation of this tiling. This example demonstrates that, in the case 
of a higher-dimensional embedding, not only the high-dimensional lattice but also 
more detailed features of the construction of the actual pattern are significant. 

4. Conclusion 

Motivated by the analysis of several quasiperiodic tilings with tenfold symmetry-two 
of which have been described in section 2-and their relation to each other we have 
proposed a general condition, namely 'mutual local derivability', under which different 

t This stiltemen! i s  a generalization of an argument used by A Kstz  i n  the investigation o f  the passibility 
of I o ~ d  inflation rules (unpublished). 
$The authors would like to thank R Penrose for an interesting discussion on this point. 
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tilings should be considered to be equivalent with respect to long range translational 
order. This concept makes no reference to an embedding and results in an arrangement 
of tilings in MLD-classes that have been discussed in an illustrative fashion without 
any attempt of a classification. Let us, at this point, reflect on the meaning of MLD- 
classes in the context of quasicrystallography, where, to our opinion, they should prove 
useful. 

At present, there are quite a few attempts to reconstruct the microscopic arrangement 
of quasicrystalline materials by means of tiling models, although, despite some positive 
hints, no present experiment is able to convincingly prove or disprove the existence 
of physical objects which fit into ( w .  t)-repetitive tiling models. As we have argued, a 
tiling that describes the structure of a certain quasicrystal should belong to the same 
MLD-class as, e.g., the arrangement of atomic positions; it would not be unreasonable 
to demand that it even belongs to the same S-MLD class. If a tiling fulfils this condition 
it is not necessary that congruent tiles are decorated in the same way by the atoms. 
But, of course, it is always possible to construct a tiling from the same MLD-class 
such that even this is the case. 

As follows from our above consideration, periodic structures belong to the same 
MLD-class if and only if their lattices are identical. In  a way, MLD-classes are the 
(abstract) objects playing the role of lattices in the more general case of ( w ,  f)-repetitive 
structures. It would then be the task to classify these objects in analogy to the Bravais 
classification of point lattices and to investigate the relation of MLD and S-MLD 
classes, which, in the periodic case, reduces to the investigation of space groups. For 
example MLD-classes which are connected by similarity transformations will be 
comprehended in the same class (as we have tacitly assumed when we emphasized 
that Y24 and Penrose tiling arc not mutually locally derivable 'in any relative orientation 
and scaling'). But, in the case of general MLD-cjasses, an investigation of the maximal 
generalized point symmetry of an MLD-class will not suffice for a satisfactory 
classification, which should result in a discrete set of classes. In the case of fivefold 
symmetry, e.g., it is possible to construct a continuous variety of MLD-classes (the 
generalized Penrose tilings) which all allow the same maximal symmetry [13]. On the 
other hand, it seems reasonable to demand such patterns as Penrose and Y*,, tilings, 
which possess both local deflation and matching rules, to be distinguished by a 
classification. That is why we think that a suitable classification scheme for quasiperiodic 
structures should be less coarse than the classification of Fourier modules alone. 
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Appendix 

We will present the argument leading to the equivalence of E l  and E2 in section 3. 
If X E  V, r > O ,  CEC,., then T p n ( x + B , )  is,finite, i.e.,=(P ,,..., P",} (depending 

on x, r, c), say. Assume r,, to be large enough such that 5: fl (x  + B,) # kl for all x E V, 
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r 3 I o ,  and c E C,. There are only finitely many P G V such that w (  P )  n w( P , )  # 0 and 
P n (x + B,) # 0, let them be P 1,. . . , P k , .  If one now defines 

pK,(x, r, c )  := ( w ( P , )  A . . . A w(P,,,) A i w ( P : )  A . .  . A  i w ( P A . ) )  

then p d x ,  r, c ) E d ( w ) ,  and one calculates easily that for C ' E  C,  we have c ' E  

p d x ,  r, c ) O p d x ,  r , c ) = p u ( x ,  r, c ' ) e F 9 : n ( x + E , ) =  T c Y n ( x + E , ) ;  furthermore, i f r e  
A, , thenp , (a ( t )+x , r ,  ?Tin, ( f )+c)=ai .~( f )+p, (x ,r ,c ) (and. i f  f E A , n  V;,,,theneven 
PJX, r, . i i , , ( f )+c )=p , (x ,  r, c)). 

Let now S be a locally finite pattern in V with bounded elements which is locally 
derivable from Sz for some C"E C",. Let R >  r, be such that, for every x, I E  V, 
TGfl (x + E,) = ( t  + Sg)n (x  + E , )  implies S n { x )  = ( t +  S)n {x } .  Choose from each 
P E  T some x p  E P such that, if P E  S and s + P E Y, then x,,,, = s + x p .  Because .Tz 
is (w ,  f)-repetitive, there is some R'>O such that S:in(B,+B,.) contains, up to 
translations by elements of a ( A , ) ,  all possible patches Tzn (x+  E R ) .  For that, Tn B,. 
contains, up to translations by elements of a(&,), all possible P E  S. As S is locally 
finite, one concludes that ( p , ( x p , R , c u - r r i , , ( t ) ) ! t ~ A , ,  a ( r ) f P ~ T n B , , }  is finite, 
say = { W , ,  . . . , W k ) .  One defines 

and verifies that this way a window mapping is generated such that C,.. 2 C,, Aw, 2 A,, 
2nd sd(!?')G d!w). 9.k window mapping is designed sech !hat T= F:)' Ccnes eet 
and, furthermore, all Sr' are 'simultnaeously' locally derivable from the corresponding 
S: ( c  E Cw):  F; n (x+  E R )  = ( I  + S;)n (x+  B R )  implies F z n { x )  = ( f  + F,";)fl{x} for 
all x, ( E  V, c I ,  C ~ E  C,. 

On the other hand, let w, w'  be two window mappings (with the same internal 
space) such that A w , z A % , ,  and d ( w ' ) ~ d ( w )  (then, a fortiori C,.?C,.j. Let 

i P: c V be such that every element of lJ{F,y'! c E Cw,! is a translate of some P 
by an element of a ( A w ) .  Each w ' ( p I )  can xpressed applying a combination of the 
operations A ,  v , and i on a finite set { P ! ,  , P, , , ] .  As indicated above, the resulting 
term can be translated directly into a pr itional function p i ( c ,  Q , ,  , . . , Q",) built 
up by elementary expressions of the form Q, E Sp. Then, for every C E  C",, t E  = ( A w ) ,  
; € { I  ,..., n )  the statement f + P , E S ? ' a ) P , ( c , f + P , , .  , t + P , , , )  holds, a con- 
sequence of A % , , z A w .  Let R a R , ,  (i.e. A R ( T : ) = a ( A ,  be such that for every ;E 

{ I  ,..., n ) , x ~ P , ,  j E { l ,  
the propositional function obtained from p ,  by replacing every elementary expression 
Q , E Y ~  by Q j E T : ' n ( x + E R ) .  Then, t + P , E S : n { x ) o B , ( x , c , t + P , ,  ,..,, f + P , , )  
for all f t ? i ( A , )  and ; € { I ,  , n } .  Now, if S-:'n(X+ E,) = ( f +  9-))n(X+ B,), 
then f E  a(A,), and one can conclude that b,(x, c, f ' + P ; , ,  . . . , /'+ P , , , ) o  
p i ( x - t , c , - t + t ' + P ,  ,,..., - t + f ' + P , , , )  forevery f ' c a ( A x . )  and every i ~ { l  , _ . _ ,  n } .  
As a consequence, Fr'n {x) = ( f  + Sp')n 1x1. For that, Fy' is locally derivable from 
F-:'. The equivalence of E l  and E2 now follows from the considerations concerning 
the uniqueness of window mappings (up to affine transformations) in section 3. 

, n i l  one has P r , n ( x + B R ) # @ .  Let a,(x, c, Q,,  
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